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Preface

Th e contents of Engineering Physics Volume 1 have been designed to cater the needs of B.Tech. students 
at the freshman level in engineering colleges. Th e book follows a simple narrative style with empha-
sis on clarity. Th e concepts are treated rigorously to help students gain a deep-seated understanding 
of the key elements intrinsic to the subject. To this end, a list of important formulae, solved prob-
lems, multiple-choice questions and review questions have been included at the end of most chapters. 
Th ese pedagogical elements would prepare the student-reader to face both internal tests and term-end 
examinations with ease. 

Engineering Physics Volume 1 deals with the physics of substances that are of practical utility. It 
covers topics on crystal physics, properties of matter and thermal physics, quantum physics, acoustics 
and ultrasonics, photonics and fi ber optics.

We hope this book will be benefi cial to both students and teachers of physics who handle the 
subject in engineering colleges. Comments, feedback and suggestions for the improvement of this 
book are welcome. Any error that may have crept into the book inadvertently may kindly be brought 
to our notice or to that of the publisher.

S. Mani Naidu



         This page is intentionally left blank.



Acknowledgement

I thank Padmasri Dr Manchu Mohan Babu, cine artiste, producer, former Member of Parliament 
and Chairman, Sree Vidyanikethan Educational Institutions, and members of the Manchu family for 
providing a congenial atmosphere and encouraging me to write this book. 

I am obliged to T. Gopala Rao, Special Offi  cer, Sree Vidyanikethan Educational Trust, for back-
ing my endeavour.  I am grateful to Dr P. C. Krishnamachary, Principal; Dr D. V. S. Bhagavanulu, 
Director; and Dr I. Sudarsan Kumar, Chief Operating Offi  cer, Sree Vidyanikethan Engineering 
 College (SVEC). I am thankful to Dr A. V. M. Prasad, Head, Department of General Engineering, 
Basic Sciences and Humanities; and Dr K. Saradhi, Controller of Examinations, SVEC, for their 
encouragement and support. 

I am grateful to the team at Pearson Education, especially to N. B. Raju and Sojan Jose, for their 
contribution in bringing this work to fruition. 

I am indebted to my guide, Dr M. Krishnaiah, Emeritus Professor of Physics, Sri Venkateswara 
University, Tirupati, for his valuable suggestions to enhance the worth of this book. I am also  grateful 
to my colleagues K. Rajendran, Dr L. V. Reddy, Dr R. Balakrishnaiah, Dr Y. B. Kishore Kumar, 
Dr P. Vishnu Prasanth, Dr V. Nirupama, Dadamiah P. M. D. Shaik, Dr B. Jagadeesh Babu, K. Kamala 
Kumari, M. P. Sivasankar and N. Manoj Kumar at SVEC for evincing keen interest in the making of 
this book. 

I appreciate the unconditional love and support given by my elder brothers N. Rama Moorthy 
Naidu and S. Subramanyam Naidu; my younger brother S. Raghunatha Naidu, and their children 
R. Vinod Babu, R. Vikram Babu, S. Diwakar Babu, R. Vinay Babu and R. Vidyadhari. I value the 
constant encouragement and patience shown by my wife S. Janaki, my son S. Venkat Salla Chowdary 
and my daughter S. Brunda Salla Chowdary, which reinforced my moral strength during the prepara-
tion of this book.

Last, but not the least, I am eternally thankful to Goddess Sree Sallapuramma for granting me 
the tenacity to hold on to my commitment of completing this book within the stipulated time.

S. Mani Naidu



         This page is intentionally left blank.



About the Author

Born in 1957, Dr Sreerama Mani Naidu was awarded a master’s degree in Engineering Physics 
by the S.V.U. College of Engineering, Tirupati, in 1982. Beginning his career as a young Research 
Assistant at the Regional Engineering College, Trichy, Tamil Nadu, he did extensive research in 
the fi eld of non-destructive testing of materials, a fi eld that continues to be alluring to the present 
day. In 1986, he returned as a full-time research scholar to S.V.U. College of Engineering, Tirupati, 
and earned his Ph.D. for his signifi cant research work on X-ray crystal and molecular structure 
 determination. 

An exemplar academician, many of Dr Naidu’s research papers have been published in inter-
national journals of repute. He is currently an Associate Professor of Physics at Sree Vidyanikethan 
 Engineering College, A. Rangampet, Tirupati.



         This page is intentionally left blank.



Road Map to the Syllabus 

UNIT I CRYSTAL PHYSICS 
Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – 
 Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor 
for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment) – 
Crystal growth techniques – solution, melt (Bridgman and Czochralski) and vapour growth  techniques 
(qualitative).

Refer Chapter 1

UNIT II PROPERTIES OF MATTER AND THERMAL PHYSICS 
Elasticity – Hooke’s law – Relationship between three modulii of elasticity (qualitative) – stress-strain 
diagram – Poisson’s ratio – Factors aff ecting elasticity – Bending moment – Depression of a cantilever – 
Young’s modulus by uniform bending – I-shaped girders.
 Modes of heat transfer – thermal conductivity – Newton’s law of cooling – Linear heat fl ow – Lee’s 
disc method – Radial heat fl ow – Rubber tube method – conduction through compound media (series 
and parallel).

Refer Chapter 2

UNIT III QUANTUM PHYSICS 
Black body radiation – Planck’s theory (derivation) – Deduction of Wien’s displacement law and 
Rayleigh – Jeans’ Law from Planck’s theory – Compton eff ect. Th eory and experimental verifi ca-
tion – Properties of Matter waves – G.P Th omson experiment – Schrödinger’s wave equation – Time 
independent and time dependent equations – Physical signifi cance of wave function – Particle in a 
one dimensional box – Electron microscope – Scanning electron microscope – Transmission electron 
microscope.

Refer Chapter 3

UNIT IV ACOUSTICS AND ULTRASONICS 
Classifi cation of Sound – decibel – Weber-Fechner law – Sabine’s formula – derivation using growth 
and decay method – Absorption Coeffi  cient and its determination – factors aff ecting acoustics of 
buildings and their remedies.



xvi Road Map to the Syllabus

 Production of ultrasonics by magnetostriction and piezoelectric methods – acoustic grating – Non 
Destructive Testing – pulse echo system through transmission and refl ection modes – A, B and C – 
scan displays, Medical applications – Sonogram.

Refer Chapter 4

UNIT V PHOTONICS AND FIBRE OPTICS 
Spontaneous and stimulated emission – Population inversion – Einstein’s A and B coeffi  cients – 
 derivation – Types of lasers – Nd:YAG, CO

2
, Semiconductor lasers (homojunction and heterojunction) – 

Industrial and Medical Applications.
 Principle and propagation of light in optical fi bres – Numerical aperture and Acceptance angle – 
Types of optical fi bres (material, refractive index, mode) – attenuation, dispersion, bending – Fibre 
Optical Communication system (Block diagram) – Active and passive fi bre sensors – Endoscope.

Refer Chapter 5



Crystal Physics

1.1 Introduction
Matter exists in three diff erent states; they are gaseous, liquid and solid states. In gaseous and liquid 
states, the atoms or molecules of the substance move from one place to other, and there is no fi xed 
position of atoms in the substance. In solids, the positions of the atoms or molecules are fi xed and may 
or may not be present  periodically at regular intervals of distance. If the atoms or molecules in a solid 
are periodical at regular intervals of distances in three-dimensional space, then that solid is known as 
crystalline solid. If the atoms or molecules do not have such a periodicity in a solid, then that solid is 
known as amorphous solid. When the periodicity of atoms or molecules is extended throughout the 
solid, then the solid is known as single crystalline solid. If the periodicity of atoms or molecules is 
extended up to small regions called grains and if these grains are very large in number, and are of dif-
ferent sizes in the solid, such a material is known as polycrystalline solid. Th e study of geometric form 
and other physical properties of crystalline solids by using X-rays, electron beams and neutron beams 
constitute the science of crystallography.

Distinction between crystalline and amorphous solids

Crystalline Solids Amorphous Solids

1.  The atoms or molecules of the crystalline solids are 
periodic in space.

1.  The atoms or molecules of the amorphous solids 
are not periodic in space.

2.  Some crystalline solids are anisotropic i.e., the 
magnitude of physical properties [such as refractive 
index, electrical conductivity, thermal conductivity, 
etc.,] are different along different directions of the 
crystal.

2.  Amorphous solids are isotropic i.e., the magnitude 
of the physical properties are same along all 
directions of the solid.

C H A P T E R 1
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3. Crystalline solids have sharp melting points. 3.  Amorphous solids do not posses sharp melting 
points.

4.  Breaks are observed in the cooling curve of a 
crystalline solid.

4. Breaks are not observed in the cooling curve.

5.  A crystal breaks along certain crystallographic 
planes.

5.  When an amorphous solid breaks, the broken 
surface is irregular because it has no crystal planes.

1.2 Space Lattice (or) Crystal Lattice
In a solid crystalline material, the atoms or molecules are arranged regularly and periodically in three 
dimensions. To explain crystal symmetries easily, it is convenient to represent an atom or a group of 
atoms that repeats in three dimensions in the crystal as a unit. If each such unit of atoms or atom in a 
crystal is replaced by a point in space, then the resultant points in space are called space lattice. Each 
point in space is called a  lattice point and each unit of atoms or atom is called basis or pattern. A space 
lattice represents the  geometrical pattern of crystal in which the surroundings of each lattice point is 
the same.

If the surroundings of each lattice point is same or if the atom or all the atoms at lattice points 
are identical, then such a lattice is called Bravais lattice. On the other hand, if the atom or the atoms 
at  lattice points are not same, then it is said to be a non-Bravais lattice. Figure 1.1 shows a two-
dimensional  lattice.

Figure 1.1 Two-dimensional lattice

B

b

2aO A

Y

X

To represent translational vectors or basis vectors, consider a co-ordinate system with its origin at the 
lattice point ‘O’. Let OA 2a=

���� �
 and AB b=

���� �
, such that OB 2a b= +

���� ��
. where a

�
 and b

�
 are called 

translational or basis vectors along X and Y directions. Th e position vector R
�

 of any lattice point can 
be represented as 1 2

R n a n b= +
� ��

. where n
1
 and n

2
 are integers, their values depend on the position of 

the lattice point under consideration with respect to the origin. In three dimensions, the position vector 
of a point can be expressed as 

1 2 3
R n a n b n c= + +
� �� �

, where a
�

, b
�

and c
�

 are the translational or basis vec-
tors along X, Y and Z directions, respectively. Th ey are also called translational primitives.



Crystal Physics 1-3

1.3 Unit Cell and Lattice Parameters
Unit cells for most of the crystals are parallelopipeds or cubes having three sets of parallel faces. A unit 
cell is the basic structural unit or building block of the crystal. A unit cell is defi ned as the smallest 
parallelopiped volume in the crystal, which on repetition along the crystallographic axes gives the 
actual crystal structure or the smallest geometric fi gure, which on repetition in three-dimensional 
space, gives the actual crystal structure called a unit cell. Th e choice of a unit cell is not unique but it 
can be constructed in a number of ways; Fig. 1.2 shows diff erent ways of representing unit cells in a 
two-dimensional lattice. A unit cell can be represented as ABCD or A′B′C′D′ or A″B″C″D″, etc.

To defi ne the lattice parameters, fi rst we defi ne crystallographic axes. Th ese axes are obtained 
by the inter section of the three non-coplanar faces of the unit cell. Th e angle between these faces or 
 crystallographic axes are known as interfacial or interaxial angles. Th e angles between the axes Y and 
Z is α, between Z and X is β and between X and Y is γ. Th e translational vectors or primitives a, b, c 
of a unit cell along X, Y, Z axes and interaxial angles α, β, γ are called cell parameters. Th ese cell 
parameters are shown in Fig. 1.3.

Th e cell parameters determine the actual size and shape of the unit cell. A unit cell can be primi-
tive or non-primitive depending on the number of lattice point/s in it. A primitive unit cell contains 
only one lattice point. If a unit cell contains more than one lattice point, then it is called non-primitive 
or multiple cells. For example, BCC and FCC are non-primitive unit cells.

Figure 1.2 Unit cells in crystal lattice

D′ C′
D′′′ C′′′

A′
A′′′ B′′′ D′′ C′′
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D C

A B

Figure 1.3 Unit cell parameters
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1.4 Crystal Systems and Bravais Lattices
For representing the type of distribution of lattice points in space, seven diff erent co-ordinate systems 
are required. Th ese co-ordinate systems are called crystal systems. Th e crystal systems are named on 
the basis of geometrical shape and symmetry. Th e seven crystal systems are: (1) Cubic (2) Tetragonal 
(3) Orthorhombic (4) Monoclinic (5) Triclinic (6) Rhombohedral (or Trigonal) and (7) Hexagonal. 
Space lattices are classifi ed according to their symmetry. In 1948, Bravais showed that 14 lattices are 
suffi  cient to describe all crystals. Th ese 14 lattices are known as Bravais lattices and are classifi ed into 
7 crystal systems based on cell parameters. Th e Bravais lattices are categorized as primitive lattice 
(P); body-centred lattice (I); face-centred lattice (F) and base-centred lattice (C). Th ese seven crystal 
 systems and Bravais lattices are described below.

1. Cubic crystal system: In this crystal system, all the unit cell edge lengths are equal and are at 
right angles to one another i.e., a = b = c and α = β = γ = 90°. In cubic system, there are three 
 Bravais lattices; they are simple (primitive); body-centred and face-centred. Th ese are shown in Fig. 1.4 
Examples for cubic system are Au, Cu, Ag, NaCl, diamond, etc.

(a)

Z

X

Y

a

α
β

γ

a

a

(b)

(c)

Figure 1.4  Cubic crystal system: (a) Simple cubic (P); (b) Body-centred cube 
(I) and (c) Face-centred cube (F)
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In simple cubic lattice, lattice points or atoms are present at the corners of the cube. In body-
centred cube, atoms are present at the corners and one atom is completely present at the centre of 
the cube. In the case of face-centred cube, atoms are present at corners and at the centres of all faces 
of cube.

2. Tetragonal crystal system: In this crystal system, two lengths of the unit cell edges are equal 
whereas the third length is diff erent. Th e three edges are perpendicular to one another i.e., a = b ≠ c 
and α = β = γ = 90°. In tetragonal system, there are two Bravais lattices; they are simple and body-
centred. Th ese are shown in Fig. 1.5. Examples for tetragonal crystal systems are TiO

2
, SnO

2
, etc.

Figure 1.5 Tetragonal crystal system

a
x

b = a

P I
y

z

c

3. Orthorhombic crystal system: In this crystal system, unit cell edge lengths are diff erent and they 
are perpendicular to one another i.e., a ≠ b ≠ c and α = β = γ = 90°. Th ere are four Bravais lattices in 
this system. Th ey are simple, face centred, body centred and base centred. Th ese are shown in Fig. 1.6. 
Examples for orthorhombic crystal system are BaSO

4
, K

2
SO

4
, SnSO

4
, etc.

Figure 1.6 Orthorhombic crystal system
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x
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b

α β
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I F
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4. Monoclinic crystal system: In this crystal system, the unit cell edge lengths are diff erent. Two 
unit cell edges are not perpendicular, but they are perpendicular to the third edge i.e., a ≠ b ≠ c; 
α = γ = 90° ≠ β. Th is crystal system has two Bravais lattices; they are simple and base centred. Th ese 
are shown in Fig. 1.7. Examples for Monoclinic crystal system are CaSO

4
.2H

2
O (gypsum), Na

3
AlF

6
 

(cryolite), etc.

Figure 1.7 Monoclinic crystal system

z

x
a

b

α
 =

 9
0°

β  ≠ 90°

γ = 90°

p c
y

c

5. Triclinic crystal system: In this crystal system, the unit cell edge lengths are diff erent and are not 
 perpendicular i.e., a ≠ b ≠ c and α ≠ β ≠ γ ≠ 90° and all the angles are diff erent. Th is crystal exists in 
primitive cell only. Th is is shown in Fig. 1.8. Examples for triclinic crystal system are K

2
Cr

2
O

7
, CuSO

4
. 

5H
2
O, etc.

Figure 1.8 Triclinic crystal system

c

a

b

6. Rhombohedral [Trigonal] crystal system: In this crystal system, all the lengths of unit cell edges 
are equal. Th e angles between the axes are equal but other than 90° i.e., a = b = c and α = β = γ ≠ 
90°. Th e Bravais lattice is simple only as shown in Fig. 1.9. Examples for Rhombohedral crystal system 
are As, Bi, Sb, etc.
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Figure 1.9 Rhombohedral crystal system

y

x

z

a

a

a

βα

γ

7. Hexagonal crystal system: In this crystal system, two sides of the unit cell edge lengths are equal 
and the angle between these edges is 120°. Th ese two edges are perpendicular to the third edge, and 
not equal in length i.e., a = b ≠ c and α = β = 90°; γ = 120°. Th e Bravais lattice is primitive only. 
Th is is shown in Fig. 1.10. Th e atoms in this crystal system are arranged in the form of a hexagonal 
close pack. 

Figure 1.10 Hexagonal crystal system

c

90°

a

O 120°
b

Th e 14 Bravais lattices of 7 crystal systems are shown in the table below.

Sl. No Crystal System Types of Bravais 
Lattices

No. of Bravais 
Lattices

Relation between Lengths 
and Angles

1 Cubic P, I, F 3 a = b = c
α = β = γ = 90°

2 Tetragonal P, I 2 a = b ≠ c
α = β = γ = 90°

3 Orthorhombic P, I, F, C 4 a ≠ b ≠ c
α = β = γ = 90°

4 Monoclinic P, C 2 a ≠ b ≠ c
α = γ = 90° ≠ β 

5 Triclinic P 1 a ≠ b ≠ c
α ≠ β ≠ γ

6 Rhombohedral (Trigonal) P 1 a = b = c
α = β = γ ≠ 90° 

7 Hexagonal P 1 a = b ≠ c
α = β = 90° 

γ = 120°
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1.5 Crystal Planes, Directions and Miller Indices
Crystal planes are defi ned as some imaginary planes inside a crystal in which large concentration of 
atoms are present. Inside the crystal, there exists certain directions along which large concentration 
of atoms exists. Th ese directions are called crystal directions. Figure 1.11 shows a two-dimensional 
 lattice with diff erent  orientations of crystal planes.

Figure 1.11 A two-dimensional lattice with crystal planes

Figure 1.12 Miller indices for a plane ABC
Y

X

Z

a

b

2b

3b

4b

2a
A

C

B

3a0

c

2c

Crystal planes and directions can be represented by a set of three small integers called Miller 
 indices [because Miller derived a method of representing crystal planes]. Th ese integers are represented 
in general as h, k and l. If these integers are enclosed in round brackets as (hkl ), then it represents a plane. 
On the other hand, if they are enclosed in square brackets as [hkl], then it represents crystal direction 
perpendicular to the above-said plane. Next, we will see the way of obtaining Miller indices for a plane.

 (i)  As shown in Fig. 1.12, take a lattice point as origin ‘0’ of crystallographic axes X, Y and Z in a space 
 lattice. Th e unit cell translational distances or lattice constants along X, Y and Z directions are 
a, b and c,  respectively. Let a crystal plane ABC intersect these three axes at 2a, 3b and c. In general, 
the intercepts can be represented as pa, qb, and rc.
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 (ii)  Divide these intercepts with lattice points translational distances along the axes to obtain inter-
cepts of the plane in terms of multiples of unit cell translational lengths.

i.e.,  2 3
, ,

a b c

a b c

 2, 3, 1

in general  , ,
pa qb rc

a b c

 p, q, r

 (iii)  Take the reciprocals of these multiples, they are 1 1 1
, ,

2 3 1
; in general 1 1 1

, ,
p q r

 (iv)  Clear these fractions [by multiplying with LCM] to smallest integers having the same ratio as the 
 fractions, enclose these integers in brackets.

 
1 1 1

6, 6, 6
2 3 1

× × ×

 3 2 6

Y

X

Z

0

(100)
(001)

(010)

Y

X

Z

0

(101)

Y

X

Z

0

(111) [100]

[0
01

]

[101]
0

Z

X

Y

[111]

[110][010]

[011]

Figure 1.13
  Represent some important crystal planes and directions in a 

cubic  crystal
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in general  , ,
pqr pqr pqr

p q r

 qr pr pq

Miller indices of the plane ABC is (326). In general, indices of a plane are represented as (hkl ) = (qr 
pr pq)

or 
1 1 1

: : : :h k l
p q r

=

Miller indices may be defi ned as a set of three small integers obtained by clearing the reciprocals 
of the three intercepts [in terms of multiples of unit cell edges] made by a plane on crystallographic 
axes. Fig 1.13 shows some important crystal planes and direction in a cubic crystal.

Now, we will see the important features of Miller indices:

 (i) Miller indices represent a set of equidistant parallel planes.
 (ii)  If the Miller indices of a plane represent some multiples of Miller indices of another plane, then 

these planes are parallel. For example (844) and (422) or (211) are parallel planes.
 (iii)  If (hkl ) are the Miller indices of a plane, then the plane divides the lattice constant ‘a’ along X-axis 

into h equal parts, ‘b’ along Y-axis into k equal parts and ‘c’ along Z-axis into l equal parts.
 (iv)  If a plane is parallel to one of the crystallographic axes, then the plane intersects that axis at infi n-

ity and the Miller indices along that direction is zero.
 (v)  If a plane cuts an axis on the negative side of the origin, then the corresponding index is negative 

and is indicated by placing a minus sign above the index. For example, if the plane cuts on nega-
tive Y-axis, then Miller indices of the plane is ( ).hkl

 (vi)  When Miller indices are enclosed in curly brackets, {hkl }, they refer to planes which in 
the crystal are equivalent even though their Miller indices may diff er. For example in a 
cubic lattice, all cube faces are equivalent, they are (100), (010), (001), (100), (010), (001);
these planes are represented as {100}.  Similarly, a full set of equivalent directions in a crys-
tal is represented by a symbol <hkl >. For example, the eight body diagonals of a cube [111], 
[1 1 1], [111], [111], [111], [1 11], [111], [11 1]  are  designated as <111>.

1.6  Distance of Separation Between Successive 
hkl Planes

Th e separation between successive parallel planes in rectangular axes crystal system can be extracted 
easily. Let us consider a rectangular [cartesian] coordinate system with origin ‘0’ at one of the lattice 
points. Let (hkl) be the Miller indices of a plane ABC, which makes intercepts OA, OB and OC on X, 
Y and Z axes, respectively as shown Fig 1.14. A normal to this plane from the origin passes through 
a point N in the plane ABC, such that ON = d

1
. Th is normal makes α′, β ′, and γ ′ angles with X, Y 

and Z-axes, respectively. Since the plane segments ‘a’ into ‘h’ equal parts, b into k equal parts and c into 
l equal parts, then the intercepts OA, OB and OC are such that:
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 OA , OB
a b

h k
= =   and  OC

c

l
=  (1.1)

where a, b, c are the unit cell edge lengths along X, Y and Z-axes, respectively. 

From Fig. 1.14

 1 1cos , cos
OA OB

d d
α β′ = ′ =   and  

1cos
OC

d
γ ′ =  (1.2)

Let the coordinates of N be x, y and z along X, Y and Z axes, then:

 ( )2 2 2 2 2

1
ON d x y z= = + +  (1.3)

Also from Fig. 1.14:

  
1 1 1

cos , cos , cos
yx z

d d d
α β γ′ = ′ = ′ =  (1.4)

Substitute Equation (1.4) in (1.3) gives:

 2 2 2 2 2 2 2

1 1 1 1
cos cos cosd d d dα β γ= ′ + ′ + ′  

 2 2 2 2

1
[cos cos cos ]d α β γ= ′ + ′ + ′  

(or)  cos2 α ′ + cos2 β ′ + cos2 γ ′ = 1 (1.5)

Substitute Equation (1.2) in (1.5) gives:

 
( ) ( ) ( )

2 2 2

1 1 1

2 2 2
1

OA OB OC

d d d
+ + =  (1.6)

Again substitute Equation (1.1) in (1.6) 

 

2 2
2 2 2 2

1
1 1

2 2 2
1

d h d k d l

a b c
+ + =   (or)  

2 2 2
2

1 2 2 2
1

h k l
d

a b c

⎡ ⎤
⎢ ⎥+ + =⎢ ⎥
⎣ ⎦

 

Figure 1.14 Orthorhombic crystal
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1

2 2 2

2 2 2

1
d

h k l

a b c

=

+ +

 (1.7)

Let 
2 2 2

h k l⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
 be the Miller indices of the next plane A ′ B′ C′, this plane makes intercepts OA ′, OB′ 

and OC′  on X, Y and Z axes, respectively. A normal from the origin to this plane passes through a 

point N′, so that ON′ = d
2
. As the extension of d

1
 is d

2
, it makes same angles α ′, β ′ and γ ′ with X, Y 

and Z-axes, respectively. Since the plane segments ‘a’ into h/2 equal parts, b into k/2 equal parts and c 
into l/2 equal parts, then the intercepts OA′, OB′ and OC′ are such that:

 

( ) ( )
2 2

OA , OB

22

a a b b

h kkh
′ ′= = = =   and  

( )
2

OC

2

c c

ll
′ = =  (1.1′)

From Fig. 1.14,

 
( ) ( )

2 2cos , cos
OA OB

d d
α β′ = ′ =

′ ′
  and  ( )

2cos
OC

d
γ ′ =

′
 (1.2′)

Let the coordinates of N ′ are x ′, y ′ and z ′ along X, Y and Z-axes, respectively.

 ( )2 2 2 2 2

2
ON d x y z′ ′ ′ ′= = + +  (1.3′)

Also from Fig 1.14:

 
2 2

cos , cos
yx

d d
α β

′′′ = ′ =   and  
2

cos z

d
γ ′′ =  (1.4′)

Substitute Equation (1.4′) in (1.3′) gives:

 2 2 2 2 2 2 2

2 2 2 2
cos cos cosd d d dα β γ′ ′ ′= + +

 = 2 2 2 2

2
cos cos cosd α β γ⎡ ⎤′ ′ ′+ +⎢ ⎥
⎣ ⎦

(or)  cos2 α′ + cos2 β′ + cos2 γ ′ = 1 (1.5′)

Substitute Equation (1.2′) in (1.5′) gives: 

 
( ) ( ) ( )

2 2 2

2 2 2

2 2 2
1

OA OB OC

d d d
+ + =

′ ′ ′
 (1.6′)

Again substitute Equation (1.1′) in (1.6′) gives:

 
( ) ( ) ( )

2 2 2 2 2 2

2 2 2

2 2 2
1

2 2 2

d h d k d l

a b c
+ + =   (or)  

( ) ( ) ( )

2 2 2
2

2 2 2 2
1

2 2 2

h k l
d

a b c

⎡ ⎤
⎢ ⎥+ + =⎢ ⎥
⎢ ⎥
⎣ ⎦

(or)  

( ) ( ) ( )

2
2 2 2

2 2 2

1

2 2 2

d
h k l

a b c

=

+ +
  (or)  2

2 2 2

2 2 2

2
d

h k l

a b c

=

+ +
 (1.7′)



Crystal Physics 1-13

Let the separation between the planes ABC and A′B′C′ is ‘d  ’.

 
2 1

2 2 2

2 2 2

1
d d d

h k l

a b c

∴ = − =

+ +

 (1.8)

Using Equation (1.8), we can determine the interplanar separation in orthorhombic crystals.
For tetragonal crystal a = b ≠ c, substitute these values in Equation (1.8), we have:

 
2 2 2 2 2

2

2 2 2
2 2

1 1
d

h k l h k l
a a c a c

= =
+

+ + +

 (1.9)

For cubic crystals: a = b = c, substitute these values in Equation (1.8), we have:

 
2 2 2

2 2 2

1
d

h k l

a a a

=

+ +
  (or)  

2 2 2

a
d

h k l
=

+ +
 (1.10)

Th e calculation of interplanar spacing for other crystal systems is complicated, so we will not 
discuss them.

1.7  Structure and Packing Fractions of Simple 
Cubic [SC] Structure

Th e unit cell edge lengths of this structure along the crystallographic axes and interaxial angles are 
equal [i.e., a = b = c and α = β = γ = 90°]. Atoms are present only at the corners of this unit cell. A 
corner atom is shared by eight unit cells, so that the contribution of a corner atom to a unit cell is 1/8. 
Th e cube has eight corners, hence the contribution of eight corner atoms to a unit cell or the number 

of atoms per unit cell = 
1

8 1
8

× = . Let ‘r’ be the radius of an atom. Th e surfaces of the atoms touch 

along the cube edges. So, the distance between the centres of two neighbouring atoms or the nearest 
neighbour distance (2r) is equal to the lattice constant ‘a’. In simple cubic cell, the number of nearest 

neighbour atoms to an atom or co- ordination number is six. Since atoms are present at a distance of 

‘a’ along X± , Y±  and Z±  directions. Th e number of nearest equidistant neighbouring atoms to an 
atom in the structure is called co-ordination number. Figure. 1.15 shows the simple cubic structure. 
Next, we fi nd the fraction of the unit cell volume occupied by the atoms. Th e simple cubic structure 
contains only one atom per unit cell.

Th e volume occupied by atoms in the unit cell ( ) 34
1

3
v rπ= ×  and

 Th e volume of unit cell (V   ) = a3. Hence, the packing factor or density of packing in the unit cell (PF) 

= 
v

V
 

( )

3
3

3 3

4
43 0.52
3 62

r
r

a r

π π π
= = = =  or 52%




